2016/17 MATH2230B/C Complex Variables with Applications Suggested Solution of Selected Problems in HW 4
 Sai Mang Pun, smpun@math.cuhk.edu.hk
 P. 2474 and P. 2649 will be graded

All the problems are from the textbook, Complex Variables and Application (9th edition).

$1 \quad$ P. 237

1. Find the residue at $z=0$ of the function
(a) $\frac{1}{z+z^{2}}$;
(b) $z \cos \left(\frac{1}{z}\right)$;
(c) $\frac{z-\sin z}{z}$;
(d) $\frac{\cot z}{z^{4}}$;
(e) $\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}$.

Solution. One can find the Taylor or Laurent expansion of a given function to calculate the residue at some certain point $z=z_{0} \in \mathbb{C}$.
(a) Note that

$$
\frac{1}{z+z^{2}}=\frac{1}{z} \cdot \frac{1}{1+z}=\frac{1}{z}+\sum_{n=1}^{\infty}(-1)^{n} z^{n-1}
$$

then the residue at $z=0$ is 1 .
(b) Note that

$$
z \cos \left(\frac{1}{z}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} \frac{1}{z^{2 n-1}}=z-\frac{1}{2 z}+\cdots,
$$

thus the residue at $z=0$ is $-\frac{1}{2}$.
(c) Note that

$$
\frac{z-\sin z}{z}=1-\frac{\sin z}{z}
$$

is analytic at $z=0$, then the residue is 0 .
(d) Note that

$$
\frac{\cot z}{z^{4}}=\frac{1}{z^{5}}-\frac{1}{3 z^{3}}-\frac{1}{45 z}+\cdots,
$$

thus the residue at $z=0$ is $-\frac{1}{45}$. One can use the definition of $\cot z$

$$
\cot z=\frac{\cos z}{\sin z}=\frac{1}{z}-\frac{z}{3}-\frac{z^{3}}{45}+\cdots
$$

to find the coefficients of the series if the expansions of $\sin z$ and $\cos z$ are known.
(e) Note that

$$
\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}=\frac{1}{z^{3}}+\frac{7}{6 z}+\cdots
$$

thus the residue at $z=0$ is $\frac{7}{6}$. One can use the definition of sinhz

$$
\sinh z=\frac{e^{z}-e^{-z}}{2}=z+\frac{z^{3}}{6}+\frac{z^{5}}{120}+\cdots
$$

to find the expansion and we know that

$$
\frac{1}{1-z^{2}}=\sum_{n=0}^{\infty} z^{2 n}
$$

2. Use Cauchy's residue theorem (Sec. 76) to evaluate the integral of each of these functions around the circle $|z|=3$ in the positive sense:
(a) $\frac{\exp (-z)}{z^{2}}$;
(b) $\frac{\exp (-z)}{(z-1)^{2}}$;
(c) $z^{2} \exp \left(\frac{1}{z}\right)$;
(d) $\frac{z+1}{z^{2}-2 z}$.

Solution. To calculate the integral around the circle $|z|=3$ in the positive sense, the residue need to be calculated first.
(a) The singularity of the given function is $z=0$, and the residue is -1 , thus

$$
\int_{C} \frac{\exp (-z)}{z^{2}} d z=-2 \pi i
$$

Note that at $z=0$,

$$
\frac{\exp (-z)}{z^{2}}=\frac{1}{z^{2}}-\frac{1}{z}+\frac{1}{2}-\frac{z}{6}+\cdots
$$

(b) The singularity of the given function is $z=1$, and the residue is $-\frac{1}{e}$, thus

$$
\int_{C} \frac{\exp (-z)}{(z-1)^{2}} d z=\frac{-2 \pi i}{e}
$$

Note that at $z=1$,

$$
\frac{\exp (-z)}{(z-1)^{2}}=\frac{1}{e(z-1)^{2}}-\frac{e}{(z-1)}+\frac{1}{2 e}+\cdots
$$

(c) The singularity of the given function is $z=0$, and the residue is $\frac{1}{6}$, thus

$$
\int_{C} z^{2} \exp \left(\frac{1}{z}\right)=\frac{2 \pi i}{6}=\frac{\pi i}{3}
$$

Note that at $z=0$,

$$
z^{2} \exp \left(\frac{1}{z}\right)=z^{2}+z+\frac{1}{2}+\frac{1}{6 z}+\frac{1}{24 z^{2}}+\cdots
$$

(d) The singularties of the given function are $z=0$ and $z=2$, the residues are $-\frac{1}{2}$ and $\frac{3}{2}$ respectively, then

$$
\int_{C} \frac{z+1}{z^{2}-2 z} d z=\left(-\frac{1}{2}+\frac{3}{2}\right) 2 \pi i=2 \pi i .
$$

Note that at $z=0$,

$$
\frac{z+1}{z^{2}-2 z}=-\frac{1}{2 z}-\frac{3}{4}-\frac{3 z}{8}+\cdots
$$

and at $z=2$,

$$
\frac{z+1}{z^{2}-2 z}=\frac{3}{2(z-2)}-\frac{1}{4}+\frac{z-2}{8}+\cdots
$$

2 P. 238

4. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each of these functions around the circle $|z|=2$ in the positive sense:
(a) $\frac{z^{5}}{1-z^{3}}$;
(b) $\frac{1}{1+z^{2}}$;
(c) $\frac{1}{z}$.

Solution.

(a) Let $f(z)=\frac{z^{5}}{1-z^{3}}$. The residue of $z^{-2} f\left(\frac{1}{z}\right)$ at $z=0$ is -1 . Note that at $z=0$,

$$
\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=-\frac{1}{z^{4}}-\frac{1}{z}-z^{2}+\cdots
$$

Then the integral of the function around $|z|=2$ is

$$
\int_{|z|=2} f(z) d z=-2 \pi i
$$

(b) Let $f(z)=\frac{1}{1+z^{2}}$. Then $z^{-2} f\left(\frac{1}{z}\right)=f(z)$ and the function is analytic at $z=0$, then the integral around $|z|=2$ is zero.
(c) Let $f(z)=\frac{1}{z}$. Then $z^{-2} f\left(\frac{1}{z}\right)=\frac{1}{z}$. Then the integral around $|z|=2$ is

$$
\int_{|z|=2} f(z) d z=2 \pi i
$$

$3 \quad$ P. 242

1. In each case, write the principal part of the function at its isolated singular point and determine whether that point is a removable singular point, an essential singular point, or a pole:
(a) $z \exp \left(\frac{1}{z}\right)$;
(b) $\frac{z^{2}}{1+z}$;
(c) $\frac{\sin z}{z}$;
(d) $\frac{\cos z}{z}$;
(e) $\frac{1}{(2-z)^{3}}$.

Solution. (a) The principal part of the function at its isolated point $z=0$ is

$$
\frac{1}{2 z}+\frac{1}{6 z^{2}}+\frac{1}{24 z^{3}}+\cdots
$$

Then, that point is an essential singular point.
(b) The principal part of the function at its isolated point $z=-1$ is

$$
\frac{1}{z+1}
$$

Then, it is a simple pole.
(c) The principal part of the function at its isolated point $z=0$ is zero. Then, it is a removable singular point.
(d) The principal part of the function at its isolated point $z=0$ is

$$
\frac{1}{z}
$$

Then, it is a simple pole.
(e) The principal part of the function at its isolated point $z=2$ is the function itself. Then, it is a pole of order 3.
2. Show that the singular point of each of the following functions is a pole. Determine the order m of that pole and the corresponding residue B.
(a) $\frac{1-\cosh z}{z^{3}}$;
(b) $\frac{1-\exp (2 z)}{z^{4}}$;
(c) $\frac{\exp (2 z)}{(z-1)^{2}}$.

Solution. (a) The Laurent series representation of the function at $z=0$ is

$$
-\frac{1}{2 z}-\frac{z}{24}-\frac{z^{3}}{720}-\cdots
$$

The singular point is then a simple pole. The residue $B=-1 / 2$.
(b) The principal part of the Laurent series representation of the function at $z=0$ is

$$
-\frac{2}{z^{3}}-\frac{2}{z^{2}}-\frac{4}{3 z}
$$

Then, the singular point is a pole of order 3 . The residue $B=-4 / 3$.
(c) The principal part of the Laurent series representation of the function at $z=1$ is

$$
\frac{e^{2}}{(z-1)^{2}}+\frac{2 e^{2}}{(z-1)}
$$

Then, it is a pole of order 2. The residue $B=2 e^{2}$.

$4 \quad$ P. 247

3. In each case, find the order m of the pole and the corresponding residue B at the singularity $z=0$:
(a) $\frac{\sinh z}{z^{4}}$;
(b) $\frac{1}{z\left(e^{z}-1\right)}$.

Solution. (a) The principal part of the given function is (at $z=0)$

$$
\frac{1}{z^{3}}+\frac{1}{6 z}
$$

The order is $m=3$ and the residue $B=\frac{1}{6}$.
(b) The principal part of the given function is (at $z=0$)

$$
\frac{1}{z^{2}}-\frac{1}{2 z}
$$

The order is $m=2$ and the residue $B=-\frac{1}{2}$.
4. Find the value of the integral

$$
\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} \mathrm{d} z
$$

taken counterclockwise around the circle (a) $|z-2|=2$; (b) $|z|=4$.
Solution. (a) The singular point inside the circle is $z=1$ and it is a simple pole.
The residue at $z=1$ is

$$
\frac{3 z^{3}+2}{\left(z^{2}+9\right)}=\frac{3+2}{1+9}=\frac{1}{2}
$$

Therefore,

$$
\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} \mathrm{d} z=\frac{2 \pi i}{2}=\pi i .
$$

(b) The singular points inside the circle are $z=1, z=3 i$ and $z=-3 i$, they are all simple poles. The residues are $1 / 2$ and

$$
\frac{3 z^{3}+2}{(z-1)(z+3 i)}=\frac{3(3 i)^{3}+2}{(3 i-1)(6 i)}=\frac{2-81 i}{(3 i-1)(6 i)} \quad z=3 i
$$

and

$$
\frac{3 z^{3}+2}{(z-1)(z-3 i)}=\frac{3(-3 i)^{3}+2}{(-3 i-1)(-6 i)}=\frac{2+81 i}{(3 i+1)(6 i)} \quad z=-3 i .
$$

Hence,

$$
\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} \mathrm{d} z=\left(\frac{1}{2}+\frac{2+81 i}{(3 i+1)(6 i)}+\frac{2-81 i}{(3 i-1)(6 i)}\right) 2 \pi i=\left(\frac{1}{2}+\frac{5}{2}\right) 2 \pi i=6 \pi i .
$$

5. Find the value of the integral

$$
\int_{C} \frac{\mathrm{~d} z}{z^{3}(z+4)},
$$

taken counterclockwise around the circle (a) $|z|=2 ;$ (b) $|z+2|=3$.
Solution. The residue of the integrand at $z=0$ is

$$
\frac{1}{2}\left(\frac{1}{z+4}\right)^{\prime \prime}=\frac{1}{(z+4)^{3}}=\frac{1}{64}
$$

The residue of the integrand at $z=-4$ is

$$
\frac{1}{z^{3}}=-\frac{1}{64} .
$$

(a) The singular point $z=0$ is inside the circle, hence the integral is

$$
\int_{C} \frac{d z}{z^{3}(z+4)}=-\frac{2 \pi i}{64}=-\frac{\pi i}{32}
$$

(b) The singular points $z=0$ and $z=-4$ are inside the circle, hence the integral is

$$
\int_{C} \frac{d z}{z^{3}(z+4)}=2 \pi i\left(\frac{1}{64}-\frac{1}{64}\right)=0 .
$$

